A Tensor Analogy of Yuan's Theorem of the Alternative and Polynomial Optimization with Sign structure
نویسندگان
چکیده
Yuan’s theorem of the alternative is an important theoretical tool in optimization, which provides a checkable certificate for the infeasibility of a strict inequality system involving two homogeneous quadratic functions. In this paper, we provide a tractable extension of Yuan’s theorem of the alternative to the symmetric tensor setting. As an application, we establish that the optimal value of a class of nonconvex polynomial optimization problems with suitable sign structure (or more explicitly, with essentially nonpositive coefficients) can be computed by a related convex conic programming problem, and the optimal solution of these nonconvex polynomial optimization problems can be recovered from the corresponding solution of the convex conic programming problem. Moreover, we obtain that this class of nonconvex polynomial optimization problems enjoy exact sum-of-squares relaxation, and so, can be solved via a single semidefinite programming problem.
منابع مشابه
The Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملآرام کردن مایع فرمی: جدال با علامتهای فرمیونی غیر مستقیم
The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics a...
متن کاملThe Effects of Shape Parameterization on the Efficiency of Evolutionary Design Optimization for Viscous Transonic Airfoils
The effect of airfoil shape parameterization on optimum design and its influence on the convergence of the evolutionary optimization process is presented. Three popular airfoil parametric methods including PARSEC, Sobieczky and B-Spline (Bezier curve) are studied and their efficiency and results are compared with those of a new method. The new method takes into consideration the characteristics...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 168 شماره
صفحات -
تاریخ انتشار 2016